Actions

OntologySummit2024: Difference between revisions

Ontolog Forum

No edit summary
No edit summary
 
(20 intermediate revisions by one other user not shown)
Line 1: Line 1:
= Ontology Summit 2024 =
= Ontology Summit 2024 =
==  Neuro-Symbolic Techniques for and with Ontologies and Knowledge Graphs ==


The [[OntologySummit|Ontology Summit]] is an annual series of events that involves the ontology community and communities related to each year's theme chosen for the summit. The Ontology Summit was started by Ontolog and NIST, and the program has been co-organized by Ontolog and NIST along with the co-sponsorship of other organizations that are supportive of the Summit goals and objectives.
The [[OntologySummit|Ontology Summit]] is an annual series of events that involves the ontology community and communities related to each year's theme chosen for the summit. The Ontology Summit was started by Ontolog and NIST, and the program has been co-organized by Ontolog and NIST along with the co-sponsorship of other organizations that are supportive of the Summit goals and objectives.


== Purpose ==
As part of Ontolog’s general advocacy to bring ontology science and related engineering into the mainstream, we endeavor to  facilitate discussion and knowledge sharing amongst stakeholders and interested parties relevant to the use of ontologies. The results will be synthesized and summarized in the form of the Ontology Summit 2024 Communiqué, with expanded supporting material provided on the web and in journal articles.
As part of Ontolog’s general advocacy to bring ontology science and related engineering into the mainstream, we endeavor to  facilitate discussion and knowledge sharing amongst stakeholders and interested parties relevant to the use of ontologies. The results will be synthesized and summarized in the form of the Ontology Summit 2024 Communiqué, with expanded supporting material provided on the web and in journal articles.


Line 9: Line 9:
Similar to our last seventeen summits, this [[OntologySummit2024|Ontology Summit 2024]] will consist of virtual discourse (over our archived mailing lists), virtual presentations and panel sessions as part of recorded video conference calls.  
Similar to our last seventeen summits, this [[OntologySummit2024|Ontology Summit 2024]] will consist of virtual discourse (over our archived mailing lists), virtual presentations and panel sessions as part of recorded video conference calls.  
As in prior years the intent is to provide some synthesis of ideas and draft a communique summarizing major points.
As in prior years the intent is to provide some synthesis of ideas and draft a communique summarizing major points.
This year began with a Fall Series in October and November; the main summit will begin in February.
This year began with a '''[[OntologySummit2024_FallSeries|Fall Series]]''' in October and November; the main summit will begin in February.


Meetings are at Noon US/Canada Eastern Time on Wednesdays and last about an hour.
Meetings are at Noon US/Canada Eastern Time on Wednesdays and last about an hour.
Line 19: Line 19:
Ontologies are representations of a knowledge domain. They define the concepts, relationships, properties, axioms and rules within that domain, providing a framework that enables a deep understanding of that subject area. Knowledge graphs are structured representations of semantic knowledge that are stored in a graph. Ontologies and knowledge graphs are used to enable machine reasoning and semantic understanding, allowing a system to draw inferences and to derive new information and relationships between entities.
Ontologies are representations of a knowledge domain. They define the concepts, relationships, properties, axioms and rules within that domain, providing a framework that enables a deep understanding of that subject area. Knowledge graphs are structured representations of semantic knowledge that are stored in a graph. Ontologies and knowledge graphs are used to enable machine reasoning and semantic understanding, allowing a system to draw inferences and to derive new information and relationships between entities.


Neural network and other machine learning models, such as LLMs, are trained on large corpora, learning the patterns and connections between words and images. Hence, although their “knowledge base” is broad, it is also sometimes incorrect and/or biased, and don't explicitly understand the semantics or relationships in that content.
Neural network and other machine learning models, such as LLMs, are trained on large corpora, learning the patterns and connections between words and images. Hence, although their “knowledge base” is broad, it is also sometimes incorrect and/or biased, and doesn't explicitly understand the semantics or relationships in that content.


Consequently, neural network and traditional AI techniques are complementary.  The Fall Series of the summit explored the similarities and distinctions between ontologies and LLMs, as well as how they can be used together.  The Main Summit Series will examine the more general topic of neuro-symbolic techniques, especially how one can leverage the complementary benefits of neural networks and of ontologies and knowledge graphs.
Consequently, neural network and traditional AI techniques are complementary.  The '''[[OntologySummit2024_FallSeries|Fall Series]]''' of the summit explored the similarities and distinctions between ontologies and LLMs, as well as how they can be used together.  The Main Summit Series will examine the more general topic of neuro-symbolic techniques, especially how one can leverage the complementary benefits of neural networks and of ontologies and knowledge graphs.
 
== Fall Series on Ontologies and Large Language Models: Related but Different ==
 
Fall Series Co-Chairs: [[AndreaWesterinen|Andrea Westerinen]] and [[MikeBennett|Mike Bennett]]
 
=== Description ===
Ontologies and Large Language Models (LLMs) such as OpenAI's GPT-4 represent two different but related concepts within the fields of artificial intelligence and knowledge representation.
 
Ontologies are representations of a knowledge domain. They define the concepts, relationships, properties, axioms and rules within that domain, providing a framework that enables a deep understanding of that subject area. Ontologies are used to enable machine reasoning and semantic understanding, allowing a system to draw inferences and to derive new information and relationships between entities.
 
On the other hand, LLMs are machine learning models that aim to generate human-like responses (including text and images) based on an input (“prompt”). They are trained on a large corpora of (mostly online) text, learning the patterns and connections between words and images. Hence, although their “knowledge base” is broad, it is also sometimes incorrect and/or biased. LLMs generate new content based on their training data, but don't explicitly understand the semantics or relationships in that content.
This mini-summit explores the similarities and distinctions between ontologies and LLMs, as well as how they can be used together.
In addition, the success of LLMs has generated much interest in AI and machine learning. This can be leveraged to promote the benefits of, and increase awareness of, the value of ontologies.
 
=== Schedule ===
* [[ConferenceCall_2023_10_04|4 October 2023]] ''Kickoff/Overview'', '''[[AndreaWesterinen|Andrea Westerinen]]''' and '''[[MikeBennett|Mike Bennett]]'''
* [[ConferenceCall_2023_10_11|11 October 2023]] ''Setting the stage'', '''[[DeborahMcGuinness|Deborah McGuinness]]'''
** Rennselaer Tetherless World Senior Constellation Chair
** Professor of Computer Science, Cognitive Science, and Industrial and Systems Engineering
** Expert in knowledge representation, reasoning languages and systems
* [[ConferenceCall_2023_10_18|18 October 2023]] ''A look across the industry, Part 1''
** '''Kurt Cagle''', Author of the [https://thecaglereport.com/ Cagle Report]
** '''Tony Seale''', Knowledge graph architect and thought leader ([https://www.linkedin.com/in/tonyseale/?originalSubdomain=uk LinkedIn])
* [[ConferenceCall_2023_10_25|25 October 2023]] ''A look across the industry, Part 2''
** '''Evren Sirin''', Stardog CTO and lead for their new [https://www.stardog.com/categories/voicebox/ Voicebox] offering
** '''Yuan He''', Key contributor to [https://github.com/KRR-Oxford/DeepOnto DeepOnto], a package for ontology engineering with deep learning
* [[ConferenceCall_2023_11_01|1 November 2023]] ''Demos of information extraction via hybrid systems''
** '''[[AndreaWesterinen|Andrea Westerinen]]''', Creator of [https://github.com/ontoinsights/deep_narrative_analysis Deep Narrative Analysis]
** '''[[PrasadYalamanchi|Prasad Yalamanchi]]''', [https://leadsemantics.com/ Lead Semantics] CTO
* [[ConferenceCall_2023_11_08|8 November 2023]] ''Broader thoughts''
** '''[[AnatolyLevenchuk|Anatoly Levenchuk]]''', Hybrid reasoning, the scope of knowledge, and what is beyond ontologies?
** '''[[JohnSowa|John Sowa]]''' and '''[[ArunMajumdar|Arun Majumdar]]''', LLMs, ontologies, and formal systems
* [[ConferenceCall_2023_11_15|15 November 2023]] Discussion and Synthesis, including questions for the full summit
 
== Main Series on Neuro-Symbolic Techniques for and with Ontologies and Knowledge Graphs ==


Main Series Chair [[KenBaclawski|Ken Baclawski]]
Main Series Chair [[KenBaclawski|Ken Baclawski]]


=== Description ===
* Track A. Foundations and Architectures
* Track A. Foundations and Architectures
* Track B. Large Language Models, Ontologies and Knowedge Graphs
* Track B. Large Language Models, Ontologies and Knowedge Graphs
Line 66: Line 30:
* Track D. Risks and Ethics
* Track D. Risks and Ethics


=== Schedule ===
== Schedule ==
* [[ConferenceCall_2024_02_21|21 February 2024]] ''Kickoff/Overview''
* [[ConferenceCall_2024_02_21|21 February 2024]] ''Kickoff/Overview''
* [[ConferenceCall_2024_02_28|28 February 2024]] Track A Session 1
* [[ConferenceCall_2024_02_28|28 February 2024]] Track A Session 1
* [[ConferenceCall_2024_03_06|6 March 2024]] Track A Session 2
** '''Gary Marcus''' ''No AGI (and no Trustworthy AI) without Neurosymbolic AI''
* [[ConferenceCall_2024_03_13|13 March 2024]] Track B Session 1 '''[[FabianNeuhaus|Fabian Neuhaus]]''' ''Ontologies in the era of large language models – a perspective''
** '''[[JohnSowa|John Sowa]]''' ''Without Ontology, LLMs are clueless''
* [[ConferenceCall_2024_03_20|20 March 2024]] Track A Session 3 '''[[TillMossakowski|Till Mossakowski]]''' ''Modular design patterns for neural-symbolic integration: refinement and combination''
* [[ConferenceCall_2024_03_06|6 March 2024]] Track B Session 1 '''Hamed Babaei Giglou''' ''LLMs4OL: Large Language Models for Ontology Learning''
* [[ConferenceCall_2024_03_27|27 March 2024]] Track B Session 2
* [[ConferenceCall_2024_03_13|13 March 2024]] Track B Session 2 '''[[FabianNeuhaus|Fabian Neuhaus]]''' ''Ontologies in the era of large language models – a perspective''
* [[ConferenceCall_2024_03_20|20 March 2024]] Track A Session 2 '''[[TillMossakowski|Till Mossakowski]]''' ''Modular design patterns for neural-symbolic integration: refinement and combination''
* [[ConferenceCall_2024_03_27|27 March 2024]] Track A Session 3 '''Markus J. Buehler''' ''Accelerating Scientific Discovery with Generative Knowledge Extraction, Graph-Based Representation, and Multimodal Intelligent Graph Reasoning''
* [[ConferenceCall_2024_04_03|3 April 2024]] ''First Synthesis''
* [[ConferenceCall_2024_04_03|3 April 2024]] ''First Synthesis''
* [[ConferenceCall_2024_04_10|10 April 2024]] Track C Applications Session 1
* [[ConferenceCall_2024_04_10|10 April 2024]] ''Second Synthesis''
* [[ConferenceCall_2024_04_17|17 April 2024]] Track C Applications Session 2
* [[ConferenceCall_2024_04_17|17 April 2024]] Track C Applications '''[[AmitSheth|Amit Sheth]]''' ''Forging Trust in Tomorrow’s AI: A Roadmap for Reliable, Explainable, and Safe NeuroSymbolic Systems''
* [[ConferenceCall_2024_04_24|24 April 2024]] Track C Applications Session 3
* [[ConferenceCall_2024_04_24|24 April 2024]] Track C Applications to Healthcare
** '''Venkat Venkatasubramanian'''
** '''Kaushik Roy'''
* [[ConferenceCall_2024_05_01|1 May 2024]] Track D Session 1 ''Risk Panel''
* [[ConferenceCall_2024_05_01|1 May 2024]] Track D Session 1 ''Risk Panel''
* [[ConferenceCall_2024_05_08|8 May 2024]] Track D Session 2 ''Ethics Panel''
* [[ConferenceCall_2024_05_08|8 May 2024]] Track D Session 2 ''Ethics Panel''
* [[ConferenceCall_2024_05_15|15 May 2024]] ''Second Synthesis''
* [[ConferenceCall_2024_05_15|15 May 2024]] ''Third Synthesis''
* [[ConferenceCall_2024_05_22|22 May 2024]] ''Communiqué''
* [[ConferenceCall_2024_05_22|22 May 2024]] ''Communiqué''


= Resources =
== Resources ==
* [[OntologySummit2024/ConferenceCallInformation|Conference Call Information]]
* [[OntologySummit2024/ConferenceCallInformation|Conference Call Information]]
* [http://bit.ly/34DOmRV Ontology Summit YouTube Channel]
* [http://bit.ly/34DOmRV Ontology Summit YouTube Channel]

Latest revision as of 21:04, 6 July 2024

Ontology Summit 2024

Neuro-Symbolic Techniques for and with Ontologies and Knowledge Graphs

The Ontology Summit is an annual series of events that involves the ontology community and communities related to each year's theme chosen for the summit. The Ontology Summit was started by Ontolog and NIST, and the program has been co-organized by Ontolog and NIST along with the co-sponsorship of other organizations that are supportive of the Summit goals and objectives.

As part of Ontolog’s general advocacy to bring ontology science and related engineering into the mainstream, we endeavor to facilitate discussion and knowledge sharing amongst stakeholders and interested parties relevant to the use of ontologies. The results will be synthesized and summarized in the form of the Ontology Summit 2024 Communiqué, with expanded supporting material provided on the web and in journal articles.

Process and Deliverables

Similar to our last seventeen summits, this Ontology Summit 2024 will consist of virtual discourse (over our archived mailing lists), virtual presentations and panel sessions as part of recorded video conference calls. As in prior years the intent is to provide some synthesis of ideas and draft a communique summarizing major points. This year began with a Fall Series in October and November; the main summit will begin in February.

Meetings are at Noon US/Canada Eastern Time on Wednesdays and last about an hour.

Description

The summit will survey current techniques that combine neural network machine learning with symbolic methods, especially methods based on ontologies and knowledge graphs.

Ontologies are representations of a knowledge domain. They define the concepts, relationships, properties, axioms and rules within that domain, providing a framework that enables a deep understanding of that subject area. Knowledge graphs are structured representations of semantic knowledge that are stored in a graph. Ontologies and knowledge graphs are used to enable machine reasoning and semantic understanding, allowing a system to draw inferences and to derive new information and relationships between entities.

Neural network and other machine learning models, such as LLMs, are trained on large corpora, learning the patterns and connections between words and images. Hence, although their “knowledge base” is broad, it is also sometimes incorrect and/or biased, and doesn't explicitly understand the semantics or relationships in that content.

Consequently, neural network and traditional AI techniques are complementary. The Fall Series of the summit explored the similarities and distinctions between ontologies and LLMs, as well as how they can be used together. The Main Summit Series will examine the more general topic of neuro-symbolic techniques, especially how one can leverage the complementary benefits of neural networks and of ontologies and knowledge graphs.

Main Series Chair Ken Baclawski

  • Track A. Foundations and Architectures
  • Track B. Large Language Models, Ontologies and Knowedge Graphs
  • Track C. Applications
  • Track D. Risks and Ethics

Schedule

  • 21 February 2024 Kickoff/Overview
  • 28 February 2024 Track A Session 1
    • Gary Marcus No AGI (and no Trustworthy AI) without Neurosymbolic AI
    • John Sowa Without Ontology, LLMs are clueless
  • 6 March 2024 Track B Session 1 Hamed Babaei Giglou LLMs4OL: Large Language Models for Ontology Learning
  • 13 March 2024 Track B Session 2 Fabian Neuhaus Ontologies in the era of large language models – a perspective
  • 20 March 2024 Track A Session 2 Till Mossakowski Modular design patterns for neural-symbolic integration: refinement and combination
  • 27 March 2024 Track A Session 3 Markus J. Buehler Accelerating Scientific Discovery with Generative Knowledge Extraction, Graph-Based Representation, and Multimodal Intelligent Graph Reasoning
  • 3 April 2024 First Synthesis
  • 10 April 2024 Second Synthesis
  • 17 April 2024 Track C Applications Amit Sheth Forging Trust in Tomorrow’s AI: A Roadmap for Reliable, Explainable, and Safe NeuroSymbolic Systems
  • 24 April 2024 Track C Applications to Healthcare
    • Venkat Venkatasubramanian
    • Kaushik Roy
  • 1 May 2024 Track D Session 1 Risk Panel
  • 8 May 2024 Track D Session 2 Ethics Panel
  • 15 May 2024 Third Synthesis
  • 22 May 2024 Communiqué

Resources